TRANSVERSE MOMENTUM DISTRIBUTIONS FROM EFFECTIVE FIELD THEORY

Ye Li Northwestern University

In Collaboration with Frank Petriello and Sonny Mantry

OUTLINE

- Introduction
- The effective field theory approach
- Numerical results and comparison with data
- Conclusion

HADRON COLLIDER

- Useful machine to discover new physics
- Do we really understand what is going on?

WHAT IS REALLY GOING ON ...

- Initial state parton shower
- Signal process (production of jets)
- Final state parton shower
- Fragmentation (hadronization)
- Hadron decays
- Beam remnants
- Underlying events

A Mess !!! Need Factorization

FACTORIZATION

- Physics of interest at hard scale M_H
- Parton shower evolution
 from M_H to Λ_{QCD}
- Final state hadronization
 at ∧oco

Factorization: separates long distance (low energy) and short distance (high energy) behavior

A FAMILIAR EXAMPLE

$$d\sigma = \sum_{i,j} d\sigma_{i,j}^{part} \otimes f_i(\xi_a) \otimes f_j(\xi_b)$$
Live at hard scale Live at non-perturbative scale

RG evolve to hard scale

- PDFs live at non-perturbative scale and can be measured experimentally
- Partonic cross section can be obtained using perturbative calculation
- Bring two scales together through RG running

RESUMMATION

- Evolution of PDF resums the large logs of hard and nonperturbative scales
- Final state restriction introduces new scales
- Example: low transverse momentum distribution in Drell-Yan process / Higgs production

TRANSVERSE MOMENTUM

Observable of interest

$$\frac{d^2\sigma}{dp_T^2dY}$$

Motivations

- Higgs Boson searches → pT cut introduced by jet veto
- W-mass measurement → transverse mass endpoint smeared by small W pT due to ISR
- Tests of pQCD
- Probe of transverse nucleon structure

TRANSVERSE MOMENTUM SPECTRUM

CDF data for Z production: hep-ex/0001021

Large Logarithms spoil perturbative convergence

Observable of interest

$$\frac{d\sigma}{dp_T^2}: \frac{1}{p_T^2}\alpha_S^n \ln^k \frac{M_h^2}{p_T^2}$$

+ (non-singular)

- High pT region: non-singular term dominates
- Low pT region: perturbation series diverges

RESUMMATION OF TRANSVERSE MOMENTUM

 Resummation has been studied in great detail in the Collins-Soper-Sterman formalism.

(Davies, Stirling; Arnold, Kauffman; Berger, Qiu; Ellis, Veseli, Ross, Webber; Brock, Ladinsky Landry, Nadolsky; Yuan; Fai, Zhang; Catani, Emilio, Trentadue; Hinchliffe, Novae; Florian, Grazzini, Cherdnikov, Stefanis; Belitsky, Ji,....)

• Resummation has also been studied recently using the EFT approach.

(Idilbi, Ji, Juan; Gao, Li, Liu; SM, Petriello; Becher, Neubert)

COLLINS-SOPER-STERMAN FORMALISM

$$\begin{split} \frac{d\sigma_{AB\to CX}}{dQ^2\,dy\,dQ_T^2} &= \frac{d\sigma_{AB\to CX}^{(\mathrm{resum})}}{dQ^2\,dy\,dQ_T^2} + \frac{d\sigma_{AB\to CX}^{(Y)}}{dQ^2\,dy\,dQ_T^2} \\ &\frac{d^2\sigma}{dp_TdY} = \sigma_0\int \frac{d^2b_\perp}{(2\pi)^2} e^{-ip_T\cdot b_\perp} \sum_{a,b} [C_a\otimes f_{a/P}](x_A,b_0/b_\perp)[C_a\otimes f_{a/P}](x_B,b_0/b_\perp) \\ &\times \exp\left\{\int_{b_0^2/b_\perp^2}^{\hat{\mathcal{Q}}^2} \frac{d\mu^2}{\mu^2} \left[\ln\frac{\hat{\mathcal{Q}}^2}{\mu^2} A(\alpha_S(\mu^2)) + B(\alpha_S(\mu^2))\right]\right\} & \qquad \text{Sudakov} \\ & \qquad \qquad \text{Factor} \end{split}$$

- Y term neglected for the purpose here
- A,B,C have well-defined perturbative expansions
- Integration of impact parameter b⊥ introduce Landau pole:
 a treatment must work for any value of pT

COLLINS-SOPER-STERMAN FORMALISM

 Resummed exponent in b⊥ space → difficult in matching to fixed order calculation in pT space

EFT FRAMEWORK

 Low pT region dominated by soft and collinear emissions from initial state:

 Hierarchy of scales suggests EFT approach with well defined power counting.

$$m_h \gg p_T \gg \Lambda_{QCD}$$

Colliding parton is part of initial state pT radiation beam jet:

EFT FRAMEWORK

$$QCD(n_f = 6) \rightarrow QCD(n_f = 5) \rightarrow SCET_{p_T} \rightarrow SCET_{\Lambda_{QCD}}$$

Top quark integrated out.

Matched onto SCET.

Soft-collinear factorization.

Matching onto PDFs.

Newly defined objects describing soft and collinear pT emissions

SCET CROSS SECTION

Schematic form of SCET cross-section:

$$\frac{d^2\sigma}{dp_T^2dY} \sim \int PS \, |C \otimes \langle \mathcal{O} \rangle|^2$$
 Wilson coefficient from hard matching

Use soft collinear decoupling to factor out the soft sector

$$\frac{d^2\sigma}{dp_T^2dY} \sim H \otimes \mathcal{G}^{ij} \otimes f_i \otimes f_j \sim H \otimes B_n \otimes B_n^- \otimes S$$
 Hard function Transverse momentum function Impact-parameter Beam Functions (iBFs): soft emission so

- Beam function is essentially unintegrated nucleon distribution function and can be matched onto PDF
- The transverse momentum function is a convolution of the iBF matching coefficient and the inverse soft function

IMPACT-PARAMETER BEAM FUNCTION

- Unintegrated nucleon function
- Definition:

$$\tilde{B}_{n}^{\alpha\beta}(x_{1}, t_{n}^{+}, b_{\perp}, \mu) = \int \frac{db^{-}}{4\pi} e^{\frac{i}{2}\frac{t_{n}^{+}b^{-}}{Q}} \sum_{\text{initial pols. } X_{n}} \langle p_{1} | \left[gB_{1n\perp\beta}^{A}(b^{-}, b_{\perp}) | X_{n} \rangle \right] \times \langle X_{n} | \delta(\bar{\mathcal{P}} - x_{1}\bar{n} \cdot p_{1}) gB_{1n\perp\alpha}^{A}(0) \right] | p_{1} \rangle,$$

SOFT FUNCTION

- Unintegrated nucleon function
- Definition:

$$S(z) = \langle 0|\operatorname{Tr}(\bar{T}\{S_{\bar{n}}T^DS_{\bar{n}}^{\dagger}S_nT^CS_n^{\dagger}\})(z)\operatorname{Tr}(T\{S_nT^CS_n^{\dagger}S_{\bar{n}}T^DS_{\bar{n}}^{\dagger}\})(0)|0\rangle$$

Running

• Factorization formula:

$$\frac{d^2\sigma}{dp_T^2dY} \sim H \otimes \mathcal{G}^{ij} \otimes f_i \otimes f_j$$

• Schematic picture of running:

Higgs pT Distribution

Prediction for Higgs boson pT distribution.

Z-production: Comparison with Data

- Good agreement with data.
- Theory curve determined completely by perturbative functions and standard PDFs.

Check to pQCD

Expand resummed formula to compare to fixed order

$$\frac{d^2 \sigma_{Z,q\bar{q}}}{dp_T^2 dY} = \frac{4\pi^2}{3} \frac{\alpha}{\sin^2 \theta_W} e_{q\bar{q}}^2 \frac{1}{s p_T^2} \sum_{m,n} \left(\frac{\alpha_s(\mu_R)}{2\pi}\right)^n {}_n D_m \ln^m \frac{M_Z^2}{p_T^2}$$

leading logarithmic : $\alpha_s^n L^{2n-1}$,

next-to-leading logarithmic: $\alpha_s^n L^{2n-2}$,

next-to-next-to-leading logarithmic : $\alpha_s^n L^{2n-3}$.

Leading Log
$$\begin{array}{l} \mathbf{Leading \ Log} \\ \mathbf{1}D_1 &= A^{(1)}f_Af_B, \\ \mathbf{1}D_0 &= B^{(1)}f_Af_B + f_B\left(P_{qq}\otimes f\right)_A + f_A\left(P_{qq}\otimes f\right)_B, \\ \mathbf{2}D_3 &= -\frac{1}{2}\left[A^{(1)}\right]^2f_Af_B, \\ \mathbf{2}D_2 &= -\frac{3}{2}A^{(1)}\left[f_B\left(P_{qq}\otimes f\right)_A + f_A\left(P_{qq}\otimes f\right)_B\right] - \left[\frac{3}{2}A^{(1)}B^{(1)} - \beta_0A^{(1)}\right]f_Af_B, \\ \mathbf{2}D_1 &= \left\{-A^{(1)}f_B\left(P_{qq}\otimes f\right)_A\ln\frac{\mu_F^2}{M_Z^2} - 2B^{(1)}f_B\left(P_{qq}\otimes f\right)_A - \frac{1}{2}\left[B^{(1)}\right]^2f_Af_B \right. \\ \mathbf{Agrees\ through\ NLL\ level} \\ \mathbf{2D_1\ requires\ NNLL} \\ &+ \frac{\beta_0}{2}A^{(1)}f_Af_B\ln\frac{\mu_R^2}{M_Z^2} + \frac{\beta_0}{2}B^{(1)}f_Af_B - \left(P_{qq}\otimes f\right)_A\left(P_{qq}\otimes f\right)_B \\ -f_B\left(P_{qq}\otimes P_{qq}\otimes f\right)_A + \beta_0\,f_B\left(P_{qq}\otimes f\right)_A\right\} + \left[A\leftrightarrow B\right]. \end{array}$$

Next-to-Next-to Leading Logarithm

- NNLO Beam/Soft function required for NNLL resummation
- Soft function worked out as the first step
- NNLO beam function in progress

Two loop graphs for soft function

Soft Function at NNLO

- Anomalous dimensions in position and impactparameter space
- Old result confirmed: Belitsky (hep-ph/9808389)
- New in impact-parameter space
- New renormalized soft function in full position and impact-parameter space

Define
$$L = -\frac{b^+b^-\mu^2 e^{2\gamma_E}}{4}$$

$$\gamma_s^{(1)}(b) = 2\frac{\alpha_s}{\pi} C_F \ln(L)$$

$$\gamma_s^{(2)}(b) = \left(\frac{\alpha_s}{\pi}\right)^2 \left\{ C_F N_F \left[-\frac{5}{9} \ln(L) + \frac{\pi^2}{36} - \frac{14}{27} \right] + C_F C_A \left[\left(-\frac{\pi^2}{6} + \frac{67}{18} \right) \ln(L) - \frac{7}{2} \zeta(3) - \frac{11\pi^2}{72} + \frac{101}{27} \right] \right\}$$

Define
$$L_{0,0} = \delta(q^{-})\delta(q^{+})$$

and $L_{0,1} = \frac{1}{\mu} \left[\frac{\mu}{q^{+}} \right]_{+}^{+} \delta(q^{-}) + \frac{1}{\mu} \left[\frac{\mu}{q^{-}} \right]_{+}^{+} \delta(q^{+})$
 $\gamma_{s}^{(1)}(q^{-}, q^{+}) = -2 \frac{\alpha_{s}}{\pi} C_{F} L_{0,1}$
 $\gamma_{s}^{(2)}(q^{-}, q^{+}) = \left(\frac{\alpha_{s}}{\pi} \right)^{2} \left\{ C_{F} N_{F} \left[\frac{5}{9} L_{0,1} + \left(\frac{\pi^{2}}{36} - \frac{14}{27} \right) L_{0,0} \right] + C_{F} C_{A} \left[\left(\frac{\pi^{2}}{6} - \frac{67}{18} \right) L_{0,1} - \left(\frac{7}{2} \zeta(3) + \frac{11\pi^{2}}{72} - \frac{101}{27} \right) L_{0,0} \right] \right\}$

Summary

Factorization formula:

$$\frac{d^2\sigma}{dp_T^2dY} \sim H \otimes \mathcal{G}^{ij} \otimes f_i \otimes f_j$$

- Perturbative pT distribution given in terms of perturbatively calculable functions and the standard PDFs.
- Performed NLL resummation and found good agreement with data.
- Next step: NNLL resummation
 - Soft function done
 - Beam function in progress